Skip to main content

Vitamins A and C help erase cell memory


Vitamins A and C help erase cell memory


Image result for vitamins
Vitamins A and C aren't just good for your health, they affect your DNA too. Researchers at the Babraham Institute and their international collaborators have discovered how vitamins A and C act to modify the epigenetic 'memory' held by cells; insight which is significant for regenerative medicine and our ability to reprogramme cells from one identity to another. The research is published today in Proceedings of the National Academy of Sciences (PNAS).
take vitamins today
For regenerative medicine, the holy grail is to be able to generate a cell that can be directed to become any other cell, such as brain cells, heart cells and lung cells. Cells with this ability are present in the early embryo (embryonic stem cells, ESC) and give rise to the many different cell types in the body. For the purposes of regenerative medicine, we need to be able to force adult cells from a patient to regress back to possessing embryonic-like capabilities and to 'forget' their previous identity.
A cell's identity is established at the DNA level by epigenetic changes to the DNA. These changes don't alter the order of the DNA letters but control which parts of the genome can be read and accessed. Consequently, every different cell type has a unique epigenetic fingerprint, enforcing and maintaining specific patterns of gene expression appropriate to the cell type. To reverse cells back to the naïve pluripotent state this epigenetic layer of information has to be lost to open up the full genome again.
Researchers from the Babraham Institute, UK, University of Stuttgart, Germany and University of Otago, New Zealand worked together to uncover how vitamins A and C affect the erasure of epigenetic marks from the genome. They looked in particular at the epigenetic modification where a methyl chemical tag is added to the C letters in the DNA sequence. Embryonic stem cells show low levels of this C tagging, called cytosine methylation, but in established cell types much more of the genome is marked by this modification. Removing the methyl tags from the DNA, called demethylation, is a central part of achieving pluripotency and wiping epigenetic memory.
The family of enzymes responsible for active removal of the methyl tags are called TET. The researchers looked at the molecular signals that control TET activity to understand more about how the activity of the TET enzymes can be manipulated during cellular programming to achieve pluripotency.
They found that vitamin A enhances epigenetic memory erasure in naïve ESC by increasing the amount of TET enzymes in the cell, meaning greater removal of methyl tags from the C letters of the DNA sequence. In contrast, they found that vitamin C boosted the activity of the TET enzymes by regenerating a co-factor required for effective action.
Dr Ferdinand von Meyenn, postdoctoral researcher at the Babraham Institute and co-first author on the paper, explained: "Both vitamins A and C act individually to promote demethylation, enhancing the erasure of epigenetic memory required for cell reprogramming." Dr Tim Hore, previously a Human Frontier Long Term Research Fellow at the Babraham Institute, now Lecturer at the University of Otago, New Zealand and co-first author on the paper, continued: "We found out that the mechanisms of how vitamins A and C enhance demethylation are different, yet synergistic."
The improved understanding of the effect of vitamin A on the TET2 enzyme also potentially explains why a proportion of patients with acute promyelocytic leukemia (once considered the deadliest form of acute leukemia) are resistant to effective combination treatment with vitamin A. By providing a possible explanation for this insensitivity for further investigation, this work could point the way to better management of the vitamin A resistant cases.
Professor Wolf Reik, Head of the Epigenetics Programme at the Babraham Institute, said: "This research provides an important understanding in order to progress the development of cell treatments for regenerative medicine. It also enhances our understanding of how intrinsic and extrinsic signals shape the epigenome; knowledge that could provide valuable insight into human disease, such as acute promyelocytic leukemia and other cancers. Putting the full picture together will allow us to understand the full complexity of the epigenetic control of the genome."take vitamins today

Story Source:
Materials provided by Babraham InstituteNote: Content may be edited for style and length.

Journal Reference:
  1. Timothy Alexander Hore, Ferdinand von Meyenn, Mirunalini Ravichandran, Martin Bachman, Gabriella Ficz, David Oxley, Fátima Santos, Shankar Balasubramanian, Tomasz P. Jurkowski, Wolf Reik. Retinol and ascorbate drive erasure of epigenetic memory and enhance reprogramming to naïve pluripotency by complementary mechanismsProceedings of the National Academy of Sciences, 2016; 201608679 DOI: 10.1073/pnas.1608679113

Comments

Popular posts from this blog

Essential Minerals

Minerals: Functions and Sources The body needs many minerals; these are called essential minerals . Essential minerals are sometimes divided up into major minerals (macrominerals) and trace minerals (microminerals).  A balanced diet usually provides all of the essential minerals. The two tables below list minerals, what they do in the body (their functions), and their sources. Major minerals Mineral Function Sources Sodium Needed for proper fluid balance, nerve transmission, and muscle contraction Table salt, soy sauce; large amounts in processed foods; small amounts in milk, breads, vegetables, and unprocessed meats Chloride Needed for proper fluid balance, stomach acid Table salt, soy sauce; large amounts in processed foods; small amounts in milk, meats, breads, and vegetables Potassium Needed for proper fluid balance, nerve transmission, and muscle contraction Meats, milk, fresh fruits and vegetables, whole grains, legumes Calciu...

Vitamin C Can Reduce High Blood Pressure, Study Finds

Vitamin C Can Reduce High Blood Pressure, Study Finds CORVALLIS, Ore. - Researchers have discovered that a 500 milligram daily supplement of vitamin C can significantly reduce high blood pressure in hypertensive patients. The study, published this month in the medical journal Lancet, was done by scientists at the Boston University School of Medicine and the Linus Pauling Institute at Oregon State University. It was supported by the National Heart, Lung and Blood Institute of the National Institutes of Health. "Hypertension is a serious health problem in much of the world," said Balz Frei, professor and director of the Linus Pauling Institute, and a co-author of the research along with principal investigator Dr. Joseph Vita at Boston University. "It's a key risk factor in heart disease and strokes." "We believe this is a significant finding that may be of considerable value to patients who have moderately elevated blood pressure," Frei s...

Zinc can halt the growth of cancer cells, study says

Zinc can halt the growth of cancer cells, study says Zinc supplements can significantly inhibit the proliferation of esophageal cancer cells, according to a new study co-authored by a University of Texas at Arlington researcher. Previous studies had shown that zinc is essential for maintaining human health and protects the esophagus from cancer. However, it has never been fully understood why zinc has the ability to prevent cancer in the esophagus. In this study, a team led by Zui Pan, an associate professor of nursing at UTA's College of Nursing and Health Innovation and a noted esophageal cancer researcher, discovered that zinc selectively halts the growth of cancer cells but not normal esophageal epithelial cells. The finding was published this month in  The FASEB Journal , the official journal of the Federation of American Societies for Experimental Biology. Esophageal cancer is the sixth leading cause of human cancer deaths around the world, according to the Nation...